3.3.7 \(\int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx\) [207]

Optimal. Leaf size=178 \[ -\frac {7 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {10 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {10 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2} \]

[Out]

10/3*sin(d*x+c)/a^2/d/sec(d*x+c)^(1/2)-7/3*sin(d*x+c)/a^2/d/(1+sec(d*x+c))/sec(d*x+c)^(1/2)-1/3*sin(d*x+c)/d/(
a+a*sec(d*x+c))^2/sec(d*x+c)^(1/2)-7*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2
*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d+10/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elli
pticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.17, antiderivative size = 178, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3902, 4105, 3872, 3854, 3856, 2720, 2719} \begin {gather*} \frac {10 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (\sec (c+d x)+1)}+\frac {10 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac {7 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(-7*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (10*Sqrt[Cos[c + d*x]]*Elliptic
F[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) + (10*Sin[c + d*x])/(3*a^2*d*Sqrt[Sec[c + d*x]]) - (7*Sin[c +
d*x])/(3*a^2*d*Sqrt[Sec[c + d*x]]*(1 + Sec[c + d*x])) - Sin[c + d*x]/(3*d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*
x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3902

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*C
sc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
 d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4105

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*
(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[
A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2} \, dx &=-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2}-\frac {\int \frac {-\frac {9 a}{2}+\frac {5}{2} a \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx}{3 a^2}\\ &=-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2}-\frac {\int \frac {-15 a^2+\frac {21}{2} a^2 \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{3 a^4}\\ &=-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2}-\frac {7 \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2}+\frac {5 \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx}{a^2}\\ &=\frac {10 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2}+\frac {5 \int \sqrt {\sec (c+d x)} \, dx}{3 a^2}-\frac {\left (7 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac {7 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {10 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2}+\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^2}\\ &=-\frac {7 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {10 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}+\frac {10 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {7 \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)} (1+\sec (c+d x))}-\frac {\sin (c+d x)}{3 d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.69, size = 257, normalized size = 1.44 \begin {gather*} \frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (-84 i \cos \left (\frac {1}{2} (c+d x)\right )-63 i \cos \left (\frac {3}{2} (c+d x)\right )-21 i \cos \left (\frac {5}{2} (c+d x)\right )+80 \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+7 i e^{-\frac {1}{2} i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )+3 \sin \left (\frac {1}{2} (c+d x)\right )+10 \sin \left (\frac {3}{2} (c+d x)\right )+12 \sin \left (\frac {5}{2} (c+d x)\right )+\sin \left (\frac {7}{2} (c+d x)\right )\right )}{6 a^2 d (1+\sec (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]^(5/2)*(Cos[d*x] + I*Sin[d*x])*((-84*I)*Cos[(c + d*x)/2] - (63*I)*Cos[(3*(c + d*
x))/2] - (21*I)*Cos[(5*(c + d*x))/2] + 80*Cos[(c + d*x)/2]^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + ((
7*I)*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x
))])/E^((I/2)*(c + d*x)) + 3*Sin[(c + d*x)/2] + 10*Sin[(3*(c + d*x))/2] + 12*Sin[(5*(c + d*x))/2] + Sin[(7*(c
+ d*x))/2]))/(6*a^2*d*E^(I*d*x)*(1 + Sec[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 270, normalized size = 1.52

method result size
default \(-\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (16 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+12 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+20 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+42 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-48 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+21 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}{6 a^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(270\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/6/a^2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(16*cos(1/2*d*x+1/2*c)^8+12*cos(1/2*d*x+1/2*c
)^6+20*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*co
s(1/2*d*x+1/2*c)^3+42*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2))-48*cos(1/2*d*x+1/2*c)^4+21*cos(1/2*d*x+1/2*c)^2-1)/(-2*sin(1/2*d*x+1/2*c)^4+
sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^3/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.80, size = 287, normalized size = 1.61 \begin {gather*} -\frac {10 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (2 \, \cos \left (d x + c\right )^{3} + 13 \, \cos \left (d x + c\right )^{2} + 10 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(10*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x
+ c) + I*sin(d*x + c)) + 10*(-I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInv
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*(I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*cos(d*x + c) + I*sqrt(
2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 21*(-I*sqrt(2)*cos(d*x
 + c)^2 - 2*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c)
 - I*sin(d*x + c))) - 2*(2*cos(d*x + c)^3 + 13*cos(d*x + c)^2 + 10*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c
)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{\sec ^{\frac {7}{2}}{\left (c + d x \right )} + 2 \sec ^{\frac {5}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(1/(sec(c + d*x)**(7/2) + 2*sec(c + d*x)**(5/2) + sec(c + d*x)**(3/2)), x)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^2*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2)),x)

[Out]

int(1/((a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________